Pseudo Wells#

This section contains documentation for the Pseudo Wells module.

Monte Carlo Simulations#

stoneforge.pseudo_wells.monte_carlo_simulations.MCS_correlated_variables(n: int, data1: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], data2: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], smooth_data1: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], smooth_data2: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], cov: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) ndarray#

Determines n Monte Carlo Simulations (MCS) using data1 and data2 as correlated variables [1]_.

Parameters#

ninteger

Number of simulations to be performed.

data1array_like

A dataset that represents a given porperty, related to data2.

data2array_like

A dataset that represents a given porperty, related to data1.

smooth_data1array_like

A smoothed version of the data1, or its general trend.

smooth_data2array_like

A smoothed version of the data2, or its general trend.

covarray_like

Spatial symmetrical covariance matrix representing both data1 and data2.

Returns#

simulationsarray_like

n Monte Carlo Simulations with correlated variables for data1 and n Monte Carlo Simulations with correlated variables for data2, in this order.

References#

properties. [S.l.]: Cambridge University Press, 2014.

stoneforge.pseudo_wells.monte_carlo_simulations.MCS_spacial_correlation(n: int, smooth_data: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], cov: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) ndarray#

Determines n Monte Carlo Simulations (MCS) with spatial correlation [1]_ for a given dataset.

Parameters#

ninteger

Number of simulations to be performed.

smooth_dataarray_like

a smoothed version of the data under examination, or its general trend.

covarray_like

Spatial symmetrical covariance matrix of the data.

Returns#

simulationsarray_like

n Monte Carlo simulations with spatial correlation for a given property, each line of this matrix represents a different simulation.

References#

properties. [S.l.]: Cambridge University Press, 2014.

stoneforge.pseudo_wells.monte_carlo_simulations.analytical_variogram(distance: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], gama: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], initial_guess: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) ndarray#

Fits the choosen analytical variogram function (model) to the experimental one [1]_, if no model is choosen, determines the best model to fit, comparing the Gaussian, Exponential and Spherical models [2].

Parameters#

distancearray_like

1D array containing all the possible distances between a pair of points in the dataset.

gamaarray_like

1D experimental variogram of the data under examination.

modelstr, optional
Analytical variogram model to be fitted. Should be one of:
  • “exponential”: fits the exponential model

  • “gaussian”: fits the gaussian model

  • “spherical”: fits the spherical model

  • “best-fit”: fits the three models above and verifies which one produces the smallest error.

If not given, default method is “best-fit”.

Returns#

modeled_variogramarray_like

The variogram model that has been choosen, or the variogram model that fits the best the experimental one.

coeficientsarray_like

The range, sill and nugget optimal values for the modeled variogram.

References#

Examples and Algorithms. India: Wiley Blackwell, 2021.

stoneforge.pseudo_wells.monte_carlo_simulations.cov_matrix(rho: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], var: float) ndarray#

Determines the 1D spatial symmetrical covariance matrix [1]_ from a modeled correlation function.

Parameters#

rhoarray_like

1D modeled correlation function of the data under examination.

varfloat

Variance (the square of the standard deviation) of the dataset.

Returns#

covarray_like

Spatial symmetrical covariance matrix of the data.

References#

properties. [S.l.]: Cambridge University Press, 2014.

stoneforge.pseudo_wells.monte_carlo_simulations.experimental_correlation(data: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) ndarray#

Determines the 1D experimental correlation function [1]_ for a dataset by calculating the Pearson correlation coefficient for each possible separation of samples.

Parameters#

dataarray_like

1D dataset for which the experimental correlation function must be calculated.

Returns#

rhoarray_like

1D experimental correlation function of the data under examination.

References#

properties. [S.l.]: Cambridge University Press, 2014.

stoneforge.pseudo_wells.monte_carlo_simulations.experimental_variogram(data: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], rho: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) ndarray#

Determines the 1D experimental variogram [1]_ of a dataset.

Parameters#

dataarray_like

1D dataset for which the experimental variogram must be calculated.

rhoarray_like

1D experimental correlation function of the data under examination.

Returns#

gamaarray_like

1D experimental variogram of the data under examination.

References#

properties. [S.l.]: Cambridge University Press, 2014.

stoneforge.pseudo_wells.monte_carlo_simulations.exponential_variogram_model(distance: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], correlation_length: float, sill: float, nugget: float = 0) ndarray#

Builds a variogram following the exponential model, using the correlation length, sill and nugget given [1]_.

Parameters#

distancearray_like

1D array containing all the possible distances between a pair of points in the dataset.

correlation_lengthfloat

The range of the variogram, or the distance where it loses the correlation

sillfloat

The maximum value of the variogram, it is equivalent to the variance of the data

nuggetfloat

The nugget effect, y value where the variogam begins

Returns#

rhoarray_like

The variogram that follows the exponential model and has the given correlation length, sill and nugget

References#

Examples and Algorithms. India: Wiley Blackwell, 2021.

stoneforge.pseudo_wells.monte_carlo_simulations.gaussian_variogram_model(distance: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], correlation_length: float, sill: float, nugget: float = 0) ndarray#

Builds a variogram following the gaussian model, using the correlation length, sill and nugget given [1]_.

Parameters#

distancearray_like

1D array containing all the possible distances between a pair of points in the dataset.

correlation_lengthfloat

The range of the variogram, or the distance where it loses the correlation

sillfloat

The maximum value of the variogram, it is equivalent to the variance of the data

nuggetfloat

The nugget effect, y value where the variogam begins

Returns#

rhoarray_like

The variogram that follows the gaussian model and has the given correlation length, sill and nugget

References#

Examples and Algorithms. India: Wiley Blackwell, 2021.

stoneforge.pseudo_wells.monte_carlo_simulations.modeled_correlation(gama: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], var: float) ndarray#

Determines the 1D modeled correlation function [1]_ from a variogram model [2].

Parameters#

gamaarray_like

1D analytical variogram model.

varfloat

variance (the square of the standard deviation) of the dataset.

Returns#

rhoarray_like

1D modeled correlation function of the data under examination.

References#

properties. [S.l.]: Cambridge University Press, 2014. .. [2] https://mmaelicke.github.io/scikit-gstat/reference/models.html

stoneforge.pseudo_wells.monte_carlo_simulations.spherical_variogram_model(distance: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], correlation_length: float, sill: float, nugget: float = 0) ndarray#

Builds a variogram following the spherical model, using the correlation length, sill and nugget given [1]_.

Parameters#

distancearray_like

1D array containing all the possible distances between a pair of points in the dataset.

correlation_lengthfloat

The range of the variogram, or the distance where it loses the correlation

sillfloat

The maximum value of the variogram, it is equivalent to the variance of the data

nuggetfloat

The nugget effect, y value where the variogam begins

Returns#

rhoarray_like

The variogram that follows the spherical model and has the given correlation length, sill and nugget

References#

Examples and Algorithms. India: Wiley Blackwell, 2021.